Upper Bounds of the Generalized Competition Indices of Symmetric Primitive Digraphs with d Loops

نویسندگان

چکیده

A digraph (D) is symmetric if (u,v) an arc of D and (v,u) also D. If a primitive contains d loops, then it said to be with loops. The m-competition index (generalized competition index) extension the exponent scrambling index. has been applied memoryless communication systems in recent years. In this article, we assume that Sn(d) represents set all digraphs n vertices where 1≤d≤n. We study indices give their upper bounds, 1≤m≤n. Furthermore, for any integer m satisfying 1≤m≤n, find bounds can reached.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela the M-competition Indices of Symmetric Primitive Digraphs without Loops

Abstract. For positive integers m and n with 1 ≤ m ≤ n, the m-competition index (generalized competition index) of a primitive digraph D of order n is the smallest positive integer k such that for every pair of vertices x and y in D, there exist m distinct vertices v1, v2, . . . , vm such that there exist walks of length k from x to vi and from y to vi for each i = 1, . . . , m. In this paper, ...

متن کامل

Generalized Exponents of Primitive Symmetric Digraphs

A strongly connected digraph D of order n is primitive (aperiodic) provided the greatest common divisor of its directed cycle lengths equals 1. For such a digraph there is a minimum integer t, called the exponent of D, such that given any ordered pair of vertices x and y there is a directed walk from x to y of length t. The exponent of D is the largest of n ‘generalized exponents’ that may be a...

متن کامل

Upper and lower bounds of symmetric division deg index

Symmetric Division Deg index is one of the 148 discrete Adriatic indices that showed good predictive properties on the testing sets provided by International Academy of Mathematical Chemistry. Symmetric Division Deg index is defined by $$ SDD(G) = sumE left( frac{min{d_u,d_v}}{max{d_u,d_v}} + frac{max{d_u,d_v}}{min{d_u,d_v}} right), $$ where $d_i$ is the degree of vertex $i$ in graph $G$. In th...

متن کامل

UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2023

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym15071348